隨著人工智能和大數(shù)據(jù)時代的到來,傳統(tǒng)嵌入式處理器中的CPU和GPU逐漸無法滿足日益增長的深度學(xué)習(xí)需求。為了應(yīng)對這一挑戰(zhàn),在一些高端處理器中,NPU(神經(jīng)網(wǎng)絡(luò)處理單元)也被集成到了處理器里。NPU的出現(xiàn)不僅減輕了CPU和GPU的負(fù)擔(dān),還讓復(fù)雜的計算任務(wù)得以高效處理。在典型的工作流中,CPU會首先接收任務(wù),并根據(jù)任務(wù)的性質(zhì)將其分配給合適的處理單元,圖像處理任務(wù)由GPU處理,而人工智能相關(guān)任務(wù)則交給NPU。
應(yīng)用領(lǐng)域 圖像識別: NPU能夠迅速對圖像進(jìn)行分類、檢測和分割等操作,大大提升了處理效率。 語音識別: NPU實現(xiàn)了實時語音轉(zhuǎn)換和語音合成功能,為語音交互提供了更自然的體驗。 自然語言處理: NPU幫助機器完成更高效的翻譯、文本分類和情感分析,推動了自然語言處理技術(shù)的發(fā)展。
實例分享:Yolov5分類檢測 在RK3588處理器上,不僅可以基于Linux系統(tǒng)使用NPU,也可以基于Android系統(tǒng)使用NPU,基于Linux使用NPU已經(jīng)多次與大家分享過就不在贅述。 在 Android平臺上,可以通過兩種方式調(diào)用RKNN API:直接鏈接librknnrt.so或鏈接基于Android平臺HIDL實現(xiàn)的librknn_api_android.so。對于需要通過CTS/VTS測試的設(shè)備,建議使用后者,而對于不需要測試的設(shè)備,直接鏈接librknnrt.so可以提供更好的性能。 在開發(fā)板網(wǎng)盤資料中提供了Yolov5分類檢測的示例—rknn_yolov5_android_apk_demo(基于瑞芯微官方demo修改)
⑵ 例程測試 啟動 Android Studio,打開rknn_yolov5_android_apk_demo應(yīng)用工程文件夾進(jìn)行編譯,編譯成功后,選擇iTOP-RK3588設(shè)備并運行應(yīng)用程序 當(dāng)APP運行時,您會在迅為iTOP-RK3588開發(fā)板外接的MIPI屏幕上看到應(yīng)用界面。在1280*800的預(yù)覽分辨率下,應(yīng)用程序能夠達(dá)到約15FPS的運行速度,表現(xiàn)令人滿意。
■ 視頻教程 https://b23.tv/7IEvdpb https://b23.tv/hDA4V7k https://b23.tv/0DY9Hmk https://b23.tv/i6JkT5S ■ 手冊資料 【北京迅為】itop-3588開發(fā)板NPU例程測試手冊 【北京迅為】itop-3588開發(fā)板NPU使用手冊 |